Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
1.
Anal Chem ; 96(19): 7386-7393, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38698660

ABSTRACT

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Subject(s)
Epitope Mapping , Receptor, ErbB-2 , Trastuzumab , Humans , Epitope Mapping/methods , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/immunology , Trastuzumab/chemistry , Alkylation , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Halogenation , Protein Footprinting/methods , Antigen-Antibody Complex/chemistry
2.
Biomed Mater ; 19(3)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38626777

ABSTRACT

This study developed a probe Fe3O4-Cy5.5-trastuzumab with fluorescence and magnetic resonance imaging functions that can target breast cancer with high HER2 expression, aiming to provide a new theoretical method for the diagnosis of early breast cancer. Fe3O4-Cy5.5-trastuzumab nanoparticles were combined with Fe3O4for T2imaging and Cy5.5 for near-infrared imaging, and coupled with trastuzumab for HER2 targeting. We characterized the nanoparticles used transmission electron microscopy, hydration particle size, Zeta potential, UV and Fourier transform infrared spectroscopy, and examined its magnetism, fluorescence, and relaxation rate related properties. CCK-8 and blood biochemistry analysis evaluated the biosafety and stability of the nanoparticles, and validated the targeting ability of Fe3O4-Cy5.5 trastuzumab nanoparticles throughin vitroandin vivocell and animal experiments. Characterization results showed the successful synthesis of Fe3O4-Cy5.5-trastuzumab nanoparticles with a diameter of 93.72 ± 6.34 nm. The nanoparticles showed a T2relaxation rate 42.29 mM-1s-1, magnetic saturation strength of 27.58 emg g-1. Laser confocal and flow cytometry uptake assay showed that the nanoparticles could effectively target HER2 expressed by breast cancer cells. As indicated byin vitroandin vivostudies, Fe3O4-Cy5.5-trastuzumab were specifically taken up and effectively aggregated to tumour regions with prominent NIRF/MR imaging properties. CCK-8, blood biochemical analysis and histological results suggested Fe3O4-Cy5.5-trastuzumab that exhibited low toxicity to major organs and goodin vivobiocompatibility. The prepared Fe3O4-Cy5.5-trastuzumab exhibited excellent targeting, NIRF/MR imaging performance. It is expected to serve as a safe and effective diagnostic method that lays a theoretical basis for the effective diagnosis of early breast cancer. This study successfully prepared a kind of nanoparticles with near-infrared fluorescence imaging and T2imaging properties, which is expected to serve as a new theory and strategy for early detection of breast cancer.


Subject(s)
Breast Neoplasms , Carbocyanines , Magnetic Resonance Imaging , Receptor, ErbB-2 , Trastuzumab , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Trastuzumab/chemistry , Female , Animals , Humans , Magnetic Resonance Imaging/methods , Receptor, ErbB-2/metabolism , Carbocyanines/chemistry , Mice , Cell Line, Tumor , Magnetite Nanoparticles/chemistry , Mice, Nude , Mice, Inbred BALB C , Particle Size , Contrast Media/chemistry , Spectroscopy, Fourier Transform Infrared
3.
Clin Nucl Med ; 49(6): e258-e265, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579266

ABSTRACT

PURPOSE: A monoclonal antibody, trastuzumab, is used for immunotherapy for HER2-expressing breast cancers. Large-sized antibodies demonstrate hepatobiliary clearance and slower pharmacokinetics. A trastuzumab fragment (Fab; 45 kDa) has been generated for theranostic use. PATIENTS AND METHODS: Fab was generated by papain digestion. Trastuzumab and Fab have been radiolabelled with 177 Lu after being conjugated with a bifunctional chelating. The affinity and target specificity were studied in vitro. The first-in-human study was performed. RESULTS: The bifunctional chelating agent conjugation of 1-2 molecules with trastuzumab and Fab was detected at the molar ratio 1:10 in bicarbonate buffer (0.5 M, pH 8) at 37°-40°C. However, 2-3 molecules of bifunctional chelating agent were conjugated when DMSO in PBS (0.1 M, pH 7) was used as a conjugation buffer at a molar ratio of 1:10. The radiolabelling yield of DOTA-conjugated Fab and trastuzumab at pH 5, 45°C to 50°C, with incubation time 2.5-3 hours was 80% and 41.67%, respectively. However, with DOTAGA-conjugated trastuzumab and Fab, the maximum radiolabelling yield at pH 5.5, 37°C, and at 2.5-3 hours was 80.83% and 83%, respectively. The calculated K d of DOTAGA Fab and trastuzumab with HER2-positive SKBR3 cells was 6.85 ± 0.24 × 10 -8 M and 1.71 ± 0.10 × 10 -8 M, respectively. DOTAGA-Fab and trastuzumab showed better radiolabelling yield at mild reaction conditions.177 Lu-DOTAGA-Fab demonstrated higher lesion uptake and lower liver retention as compared with 177 Lu-DOTAGA-trastuzumab. However, 177 Lu-DOTAGA-Fab as compared with 177 Lu-DOTAGA-trastuzumab showed a relatively early washout (5 days) from the lesion. CONCLUSIONS: 177 Lu-DOTAGA-Fab and trastuzumab are suitable for targeting the HER2 receptors.


Subject(s)
Breast Neoplasms , Immunoglobulin Fab Fragments , Isotope Labeling , Lutetium , Radioisotopes , Trastuzumab , Humans , Trastuzumab/pharmacology , Trastuzumab/pharmacokinetics , Trastuzumab/chemistry , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Female
4.
J Pharm Biomed Anal ; 244: 116123, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38554555

ABSTRACT

Monoclonal antibodies like Herceptin play a pivotal role in modern therapeutics, with their glycosylation patterns significantly influencing their bioactivity. To characterize the N-glycan profile and their relative abundance in Herceptin, we employed two analytical methods: hydrophilic interaction chromatography with fluorescence detection (HILIC-FLD) for released glycans and liquid chromatography tandem mass spectrometry (LC-MS/MS) for glycopeptides. Our analysis included 21 European Union (EU)-Herceptin lots and 14 United States (US)-Herceptin lots. HILIC-FLD detected 25 glycan species, including positional isomers, revealing comparable chromatographic profiles for both EU and US lots. On the other hand, LC-MS/MS identified 26 glycoforms within the glycopeptide EEQYNSTYR. Both methods showed that a subset of glycans dominated the total abundance. Notably, EU-Herceptin lots with an expiration date of October 2022 exhibited increased levels of afucosylated and high mannose N-glycans. Our statistical comparisons showed that the difference in quantitative results between HILIC-FLD and LC-MS/MS is significant, indicating that the absolute quantitative values depend on the choice of the analytical method. However, despite these differences, both methods demonstrated a strong correlation in relative glycan proportions. This study contributes to the comprehensive analysis of Herceptin's glycosylation, offering insights into the influence of analytical methods on glycan quantification and providing valuable information for the biopharmaceutical industry.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Polysaccharides , Tandem Mass Spectrometry , Trastuzumab , Trastuzumab/analysis , Trastuzumab/chemistry , Glycosylation , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Polysaccharides/analysis , Polysaccharides/chemistry , Humans , Glycopeptides/analysis , Glycopeptides/chemistry , Antineoplastic Agents, Immunological/analysis , Antineoplastic Agents, Immunological/chemistry , Liquid Chromatography-Mass Spectrometry
5.
Structure ; 32(5): 536-549.e5, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38460519

ABSTRACT

Overexpression of human epidermal growth factor receptor 2 (HER2) in breast and gastric cancers is associated with a poor prognosis, making it an important therapeutic target. Here, we establish a novel cancer-specific anti-HER2 antibody, H2Mab-214. H2Mab-214 reacts with HER2 on cancer cells, but unlike the therapeutic antibody trastuzumab, it does not react with HER2 on normal cells in flow cytometry measurements. A crystal structure suggests that H2Mab-214 recognizes a structurally disrupted region in the HER2 domain IV, which normally forms a ß-sheet. We show that this misfolding is inducible by site-directed mutagenesis mimicking the disulfide bond defects that also may occur in cancer cells, indicating that the local misfolding in the Cys-rich domain IV governs the cancer-specificity of H2Mab-214. Furthermore, we show that H2Mab-214 effectively suppresses tumor growth in xenograft mouse models. Our findings offer a potential strategy for developing cancer-specific therapeutic antibodies that target partially misfolded cell surface receptors.


Subject(s)
Protein Folding , Receptor, ErbB-2 , Xenograft Model Antitumor Assays , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/chemistry , Humans , Animals , Mice , Cell Line, Tumor , Models, Molecular , Female , Crystallography, X-Ray , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/chemistry , Trastuzumab/pharmacology , Trastuzumab/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy
6.
J Control Release ; 367: 148-157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228272

ABSTRACT

Antibody-drug conjugates (ADCs) are a rapidly expanding class of anticancer therapeutics, with 14 ADCs already approved worldwide. We developed unique linker technologies for the bioconjugation of drug molecules with controlled-release applications. We synthesized cathepsin-cleavable ADCs using a dimeric prodrug system based on a self-immolative dendritic scaffold, resulting in a high drug-antibody ratio (DAR) with the potential to reach 16 payloads due to its dendritic structure, increased stability in the circulation and efficient release profile of a highly cytotoxic payload at the targeted site. Using our novel cleavable linker technologies, we conjugated the anti-human epidermal growth factor receptor 2 (anti-HER2) antibody, trastuzumab, with topoisomerase I inhibitors, exatecan or belotecan. The newly synthesized ADCs were tested in vitro on mammary carcinoma cells overexpressing human HER2, demonstrating a substantial inhibitory effect on the proliferation of HER2-positive cells. Importantly, a single dose of our trastuzumab-based ADCs administered in vivo to mice bearing HER2-positive tumors, showed a dose-dependent inhibition of tumor growth and survival benefit, with the most potent antitumor effects observed at 10 mg/kg, which resulted in complete tumor regression and survival of 100% of the mice. Overall, our novel dendritic technologies using the protease-cleavable Val-Cit linker present an opportunity for the development of highly selective and potent controlled-released therapeutic payloads. This strategy could potentially lead to the development of novel and effective ADC technologies for patients diagnosed with HER2-positive cancers. Moreover, our proposed ADC linker technology can be implemented in additional medical conditions such as other malignancies as well as autoimmune diseases that overexpress targets, other than HER2.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Humans , Mice , Animals , Topoisomerase I Inhibitors/therapeutic use , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line, Tumor , Trastuzumab/chemistry , Antineoplastic Agents/chemistry , Receptor, ErbB-2/metabolism , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry
7.
J Pharm Sci ; 113(4): 1029-1037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37839612

ABSTRACT

Monoclonal antibodies (mAbs) can be damaged during the aseptic compounding process, with aggregation being the most prevalent form of degradation. Protein aggregates represent one of several risk factors for undesired immunogenicity of mAbs, which can potentially lead to severe adverse drug reactions and less effective treatments. Since data on aggregate and particle formation by robotic compounding is missing, we aimed to compare the antibody stability between robotic- and manual compounding of mAbs with regard to formation of (sub)visible aggregates. Infliximab and trastuzumab were compounded into infusion bags with the APOTECAchemo robot or manually by nurses or pharmacy technicians. The products were analyzed by quantifying (sub)visible particles with nanoparticle tracking analysis, dynamic light scattering (DLS), light obscuration, micro-flow imaging, high pressure size exclusion chromatography (HP-SEC), and visual inspection. HP-SEC showed high percentages monomers in trastuzumab (99.4 % and 99.4 %) and infliximab (99.5 % and 99.6 %) infusion bags for both manual and robotic compounding, respectively. DLS indicated more consistent and reproducible results with robotic compounding, and confirmed monodisperse samples with a higher polydispersity index for manual compounding (0.16, interquartile range; IQR 0.14-0.18) compared to robotic compounding (0.12, IQR 0.11-0.15). This study shows that the studied compounding methods had a minor impact on the number of aggregates and particles, and that robotic compounding of mAbs provided at least similar quality as manual compounding.


Subject(s)
Robotic Surgical Procedures , Robotics , Humans , Antibodies, Monoclonal/chemistry , Infliximab/chemistry , Robotics/methods , Trastuzumab/chemistry , Drug Compounding/methods
8.
Mol Cancer Ther ; 23(1): 84-91, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37774393

ABSTRACT

Key defining attributes of an antibody-drug conjugate (ADC) include the choice of the targeting antibody, linker, payload, and the drug-to-antibody ratio (DAR). Historically, most ADC platforms have used the same DAR for all targets, regardless of target characteristics. However, recent studies and modeling suggest that the optimal DAR can depend on target expression level and intratumoral heterogeneity, target internalization and trafficking, and characteristics of the linker and payload. An ADC platform that enables DAR optimization could improve the success rate of clinical candidates. Here we report a systematic exploration of DAR across a wide range, by combining THIOMAB protein engineering technology with Dolasynthen, an auristatin-based platform with monomeric and trimeric variants. This approach enabled the generation of homogeneous, site-specific ADCs spanning a discrete range of DARs 2, 4, 6, 12, and 18 by conjugation of trastuzumab IgG1 THIOMAB constructs with 1, 2, or 3 engineered cysteines to monomeric or trimeric Dolasynthen. All ADCs had physicochemical properties that translated to excellent in vivo pharmacology. Following a single dose of ADCs in a HER2 xenograft model with moderate antigen expression, our data demonstrated comparable pharmacokinetics for the conjugates across all DARs and dose-dependent efficacy of all test articles. These results demonstrate that the Dolasynthen platform enables the generation of ADCs with a broad range of DAR values and with comparable physiochemical, pharmacologic, and pharmacokinetics profiles; thus, the Dolasynthen platform enables the empirical determination of the optimal DAR for a clinical candidate for a given target.


Subject(s)
Immunoconjugates , Humans , Immunoconjugates/chemistry , Xenograft Model Antitumor Assays , Trastuzumab/pharmacology , Trastuzumab/chemistry , Receptor, ErbB-2/metabolism , Cysteine
9.
Anal Bioanal Chem ; 416(2): 519-532, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38008785

ABSTRACT

Antibody-drug conjugates (ADCs) are highly complex proteins mainly due to the structural microvariability of the mAb, along with the additional heterogeneity afforded by the bioconjugation process. Top-down (TD) and middle-down (MD) strategies allow the straightforward fragmentation of proteins to elucidate the conjugated amino acid residues. Nevertheless, these spectra are very crowded with multiple overlapping and unassigned ion fragments. Here we report on the use of dedicated software (ClipsMS) and application of proton transfer charge reduction (PTCR), to respectively expand the fragment ion search space to internal fragments and improve the separation of overlapping fragment ions for a more comprehensive characterization of a recently approved ADC, trastuzumab deruxtecan (T-DXd). Subunit fragmentation allowed between 70 and 90% of sequence coverage to be obtained. Upon addition of internal fragment assignment, the three subunits were fully sequenced, although internal fragments did not contribute significantly to the localization of the payloads. Finally, the use of PTCR after subunit fragmentation provided a moderate sequence coverage increase between 2 and 13%. The reaction efficiently decluttered the fragmentation spectra allowing increasing the number of fragment ions characteristic of the conjugation site by 1.5- to 2.5-fold. Altogether, these results show the interest in the implementation of internal fragment ion searches and more particularly the use of PTCR reactions to increase the number of signature ions to elucidate the conjugation sites and enhance the overall sequence coverage of ADCs, making this approach particularly appealing for its implementation in R&D laboratories.


Subject(s)
Immunoconjugates , Protons , Workflow , Trastuzumab/chemistry , Immunoconjugates/chemistry , Ions/chemistry
10.
Colloids Surf B Biointerfaces ; 232: 113579, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864913

ABSTRACT

In this study, Ferrites (Fe3O4, MnFe2O4, ZnFe2O4) and different stoichiometric ratios of ZnxMn1-xFe2O4 (x = 0.2, 0.4, 0.6, and 0.8) nanoparticles (<15 nm) were synthesized by microwave-assisted method and optimised for hyperthermia studies. The selection of the optimised variant of ferrite i.e. Zn0.4Mn0.6Fe2O4 was found to be the best variant based on VSM (38.14 emu g-1) hyperthermia-based temperature rise (maximum ΔT of 38 °C), SAR and ILP values. Trastuzumab, which is known to bind with HER2 receptors of breast cancer was chemically tethered onto Zn0.4Mn0.6Fe2O4 nanoparticles through EDC/NHS coupling with a loading efficiency of 80%. The attached Trastuzumab aided during the pre-treatment step by aiding in the internalisation of Zn0.4Mn0.6Fe2O4 nanoparticles, with cellular uptake of 11% in SK-BR-3 (cancerous HER2+) cells compared to ∼5% for MDA-MB-231 (cancerous HER2-) and RPE-1 (non-cancerous) cells. In the presence of a hyperthermia trigger for 15 mins, ZnxMn1-xFe2O4 -Trastuzumab formulation had a maximum therapeutic effect by reducing the SK-BR-3 cell viability to 14% without adversely affecting the RPE-1 cells. The mechanism of ZnxMn1-xFe2O4-Trastuzumab combination was examined using an internalisation study, MTT-based viability, proliferation study, and ROS generation assay. By utilizing both Trastuzumab and hyperthermia, we achieve their synergistic anticancer properties while minimizing the drug requirement and reducing any effect on non-cancerous cells.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Nanoparticles , Humans , Female , Trastuzumab/pharmacology , Trastuzumab/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Zinc , Cell Line, Tumor
11.
Bioconjug Chem ; 34(10): 1802-1810, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37751398

ABSTRACT

Bioconjugates of antibodies and their derivatives radiolabeled with ß+-emitting radionuclides can be utilized for diagnostic PET imaging. Site-specific attachment of radioactive cargo to antibody delivery vectors provides homogeneous, well-defined immunoconjugates. Recent studies have demonstrated the utility of oxaziridine chemistry for site-specific labeling of methionine residues. Herein, we applied this approach to site-specifically radiolabel trastuzumab-derived Fab immunoconjugates with 68Ga, which can be used for in vivo PET imaging of HER2-positive breast cancer tumors. Initially, a reactive azide was introduced to a single solvent-accessible methionine residue in both the wild-type Fab and an engineered derivative containing methionine residue M74, utilizing the principles of oxaziridine chemistry. Subsequently, these conjugates were functionalized with a modified DFO chelator incorporating dibenzocyclooctyne. The resulting DFO-WT and DFO-M74 conjugates were radiolabeled with generator-produced [68Ga]Ga3+, to yield the novel PET radiotracers, [68Ga]Ga-DFO-WT and [68Ga]Ga-DFO-M74. In vitro and in vivo studies demonstrated that [68Ga]Ga-DFO-M74 exhibited a higher affinity for HER2 receptors. Biodistribution studies in mice bearing orthotopic HER2-positive breast tumors revealed a higher uptake of [68Ga]Ga-DFO-M74 in the tumor tissue, accompanied by rapid renal clearance, enabling clear delineation of tumors using PET imaging. Conversely, [68Ga]Ga-DFO-WT exhibited lower uptake and inferior image contrast compared to [68Ga]Ga-DFO-M74. Overall, the results demonstrate that the highly facile methionine-oxaziridine modification approach can be simply applied to the synthesis of stable and site-specifically modified radiolabeled antibody-chelator conjugates with favorable pharmacokinetics for PET imaging.


Subject(s)
Immunoconjugates , Neoplasms , Animals , Mice , Trastuzumab/chemistry , Gallium Radioisotopes , Methionine , Tissue Distribution , Deferoxamine/chemistry , Positron-Emission Tomography/methods , Chelating Agents/chemistry , Racemethionine , Immunoconjugates/chemistry , Zirconium/chemistry , Cell Line, Tumor
12.
Langmuir ; 39(34): 12235-12247, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37581531

ABSTRACT

We compared different biofunctionalization strategies for immobilizing trastuzumab, an IgG targeting the HER2 biomarker, onto 100 nm spherical gold nanoparticles because of the E/K coiled-coil peptide heterodimer. First, Kcoil peptides were grafted onto the gold surface while their Ecoil partners were genetically encoded at the C-terminus of trastuzumab's Fc region, allowing for a strong and specific interaction between the antibodies and the nanoparticles. Gold nanoparticles with no Kcoil peptides on their surface were also produced to immobilize Ecoil-tagged trastuzumab antibodies via the specific adsorption of their negatively charged Ecoil tags on the positively charged gold surface. Finally, the nonspecific adsorption of wild-type trastuzumab on the gold surface was also assessed, with and without Kcoil peptides grafted on it beforehand. We developed a thorough workflow to systematically compare the immobilization strategies regarding the stability of nanoparticles, antibody coverage, and ability to specifically bind to HER2-positive breast cancer cells. All nanoparticles were highly monodisperse and retained their localized surface plasmon resonance properties after biofunctionalization. A significant increase in the amount of immobilized antibodies was observed with the two oriented coil-based strategies compared to nonspecific adsorption. Finally, all biofunctionalization strategies allowed for the detection of HER2-positive breast cancer cells, but among the investigated approaches, we recommend using the E/K coiled-coil-based strategy for gold nanoparticle biofunctionalization because it allows for the qualitative and quantitative detection of HER2-positive cells with a higher contrast compared to HER2-negative cells.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Trastuzumab , Female , Humans , Breast Neoplasms/diagnosis , Gold/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , Trastuzumab/chemistry
13.
MAbs ; 15(1): 2218951, 2023.
Article in English | MEDLINE | ID: mdl-37300397

ABSTRACT

Long-term delivery is a successful strategy used to reduce the adverse effects of monoclonal antibody (mAb)-based treatments. Macroporous hydrogels and affinity-based strategies have shown promising results in sustained and localized delivery of the mAbs. Among the potential tools for affinity-based delivery systems, the de novo designed Ecoil and Kcoil peptides are engineered to form a high-affinity, heterodimeric coiled-coil complex under physiological conditions. In this study, we created a set of trastuzumab molecules tagged with various Ecoil peptides and evaluated their manufacturability and characteristics. Our data show that addition of an Ecoil tag at the C-termini of the antibody chains (light chains, heavy chains, or both) does not hinder the production of chimeric trastuzumab in CHO cells or affect antibody binding to its antigen. We also evaluated the influence of the number, length, and position of the Ecoil tags on the capture and release of Ecoil-tagged trastuzumab from macroporous dextran hydrogels functionalized with Kcoil peptide (the Ecoil peptide-binding partner). Notably, our data show that antibodies are released from the macroporous hydrogels in a biphasic manner; the first phase corresponding to the rapid release of residual, unbound trastuzumab from the macropores, followed by the affinity-controlled, slow-rate release of antibodies from the Kcoil-functionalized macropore surface.


Subject(s)
Antibodies, Monoclonal , Dextrans , Animals , Cricetinae , Hydrogels/chemistry , Cricetulus , Peptides/chemistry , Trastuzumab/chemistry
14.
Acta Biochim Pol ; 70(2): 261-269, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37331014

ABSTRACT

More than 1 million women worldwide are diagnosed with breast cancer (BC) each year. This study aims to explore the molecular mechanisms of ß-catenin affecting the trastuzumab tolerance in HER2-positive BC. ß-catenin in BC and non-BC tissue samples were assessed by immunohistochemistry. ß-catenin and HER2 were over-expressed and knockdown to evaluate their role in tumorigenicity and trastuzumab resistance in cell and animal models using soft-agar and xenograft assays. Confocal laser immunofluorescence assay and co-immunoprecipitation were used to assess protein-protein binding. Expression of genes was detected using Western blot analysis. ß-catenin was highly expressed in primary and metastatic BC, overexpression of ß-catenin increased the colony formation of MCF7 cells when it was co-expressed with HER2 and synergically increased the tumor size in immunodeficient mice. Overexpression of ß-catenin also increased the phosphorylation of HER2 and HER3 and increased the size of tumor derived from HER2-elevated cells. Confocal laser immunofluorescence assay showed that ß-catenin and HER2 were co-localized on the membrane of MDA-MB-231 cells, suggesting that ß-catenin binds HER2 to activate the HER2 signaling pathway. Immunoprecipitation of ß-catenin and HER2 also confirmed this binding. On the other hand, knockdown of ß-catenin in MDA-MB-231 cell lines decreased the activity of SRC and decreased phosphorylation of HER2 at Y877 and Y1248. The interaction between HER2 and SRC was enhanced when ß-catenin was overexpressed, and ß-catenin increased the resistance of tumor derived from HER2 elevated BT474 cells to trastuzumab. Further analysis showed that trastuzumab inhibited the activation of HER3, but SRC was still highly expressed in cells overexpressing ß-catenin. Our work demonstrates that ß-catenin is highly expressed in BC and it synergically promotes formation and progress of BC with HER2. ß-catenin binds with HER2 leading to enhanced interaction with SRC and resistance to trastuzumab.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , beta Catenin , Animals , Female , Humans , Mice , beta Catenin/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Trastuzumab/chemistry
15.
ACS Appl Bio Mater ; 6(7): 2644-2650, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37345801

ABSTRACT

We developed a small MRI/NIR-II probe to target HER2 (tetanucleotide) breast cancer cells. The probe is composed of PLGA-b-PEG micelles encapsulated NIR-II, and Gd-DOTA is conjugated at the border of PLGA/PEG. Herceptin was then conjugated to carboxyl residues of PLGA-b-PEG chains. We examined the influence of carboxyl group ratios on the probe property stability and Herceptin concentration and the binding affinity to HER2(+) cells corresponding to the -COOH ratios. The binding assays demonstrated that the optimal surface ratio of -COOH is 5%, which is less affected by fluorescence reduction and which exhibited the highest antigen-capturing activity.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Trastuzumab/chemistry , Micelles , Magnetic Resonance Imaging
16.
Bioorg Med Chem Lett ; 91: 129348, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37217025

ABSTRACT

Pairing immunostimulatory small molecules with the targeting capability of an antibody has emerged as a novel therapeutic modality with the potential to treat a variety of solid tumors. A series of compounds based on an imidazo-thienopyridine scaffold were synthesized and tested for their ability to agonize the innate immune sensors toll-like receptor 7 and 8 (TLR7/8). Structure-activity relationship (SAR) studies revealed that certain simple amino-substituents could enable TLR7 agonism at low nanomolar concentrations. Drug-linkers containing either payload 1 or 20h were conjugated to the HER2-targeting antibody trastuzumab at the interchain disulfide cysteine residues using a cleavable valine-citrulline dipeptide linker and stochastic thiol-maleimide chemistry. In vitro, these immune-stimulating antibody drug-conjugates (ADCs) were found to induce cytokine release in a murine splenocyte assay when co-cultured with the HER2-high NCI-N87 cancer cell line. In vivo, tumor regression was observed with a single dose in an NCI-N87 gastric carcinoma xenograft model in BALB/c nude mice.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Mice , Humans , Animals , Toll-Like Receptor 7 , Immunoconjugates/chemistry , Mice, Nude , Trastuzumab/chemistry , Adjuvants, Immunologic , Cell Line, Tumor , Thienopyridines , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
17.
Iran Biomed J ; 27(2 & 3): 108-16, 2023 03 01.
Article in English | MEDLINE | ID: mdl-37070702

ABSTRACT

Background: Post-translational modifications in bioprocessing and storage of recombinant mAbs are the main sources of charge variants. While the profile of these kinds of variants is considered an important attribute for the therapeutic mAbs, there is controversy about their direct role in safety and efficacy. In this study, the physicochemical and pharmacokinetic (PK) properties of the separated charge variants belonging to a trastuzumab potential biosimilar, were examined. Methods: The acidic peaks, basic peaks, and main variants of trastuzumab were separated and enriched by semi-preparative weak cation exchange. A panel of analytical techniques was utilized to characterize the physicochemical properties of these variants. The binding affinity to HER2 and FcγRs and the PK parameters were evaluated for each variant. Results: Based on the results, the charge variants of the proposed biosimilar had no significant influence on the examined efficacy and PK parameters. Conclusion: During the development and production of biosimilar monoclonal antibodies, evaluating the effect of their charge variants on efficacy and PK parameters is needed.


Subject(s)
Biosimilar Pharmaceuticals , Trastuzumab/chemistry , Biosimilar Pharmaceuticals/chemistry , Biosimilar Pharmaceuticals/pharmacokinetics , Antibodies, Monoclonal
18.
Bioorg Chem ; 134: 106463, 2023 05.
Article in English | MEDLINE | ID: mdl-36924655

ABSTRACT

Phenyldivinylsulfonamides emerged from a series of divinylsulfonamides, demonstrating their ability to effectively re-bridge disulfide bonds. This kind of linkers was attached to monomethyl auristatin E (MMAE) and further conjugated with a model antibody, trastuzumab. After optimization, the linker 20 can deliver stable and highly homogenous DAR (Drug-to-Antibody Ratio) four antibody-drug conjugates (ADCs). The method was also applicable for other IgG1 antibodies to obtain ADCs with controlled four payloads. Moreover, the MMAE-bearing ADC is potent, selective and efficacious against target cell lines.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Cell Line, Tumor , Trastuzumab/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
19.
Anal Chim Acta ; 1246: 340892, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36764776

ABSTRACT

Selective enrichment and analysis of therapeutic antibodies in biological fluids are crucial for the development of biopharmaceuticals. Recently, peptide-based affinity chromatography has exhibited fascinating prospects for antibody enrichment due to the high affinity and specificity of small peptides. However, the post-modification approach of peptide ligands on the material surface is complicated and time-consuming. In this study, a methacrylate modified tetrapeptide (m-EDPW) was firstly demonstrated as the affinity ligand of trastuzumab (Kd = 1.91 ± 1.81 µM). Next, the m-EDPW based affinity monolith was prepared using a facile one-step polymerization method, which could overcome the drawbacks of traditional post-modification preparation strategies. Based on the monolith as described above, a simple enrichment approach was developed under the optimal washing and elution conditions. Based on the excellent properties, such as high porosity (53.09%), weak electrostatic interaction and suitable affinity (1.00 ± 2.14 µM for anti-HER2 ADC), this novel monolith exhibited good specificity and recovery for antibodies (91.6% for trastuzumab, 98.37% for anti-HER2 ADC), and low nonspecific adsorption for human serum albumin (DBC10% = 0.5 mg/g polymer). Particularly, this material was successfully applied to enrich trastuzumab and its related antibody-drug conjugate (ADC) from different cell culture medias. The dynamic tracking analysis of ADC in the critical quality attributes (e.g., charge variants, drug to antibody ratio and subunit conjugation ratio) was also achieved by combining the enrichment approach, capillary electrophoresis or reversed phase liquid chromatography. In summary, the exploited peptide-based mimotope affinity materials showed a great potential for the application in biopharmaceutical analysis.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Humans , Trastuzumab/chemistry , Peptides/chemistry , Chromatography, Reverse-Phase , Chromatography, Affinity
20.
Anal Chem ; 95(4): 2203-2212, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36669833

ABSTRACT

Antibody combination therapies have become viable therapeutic treatment options for certain severe diseases such as cancer. The co-formulation production approach is intrinsically associated with more complex drug product variant profiles and creates more challenges for analytical control of drug product quality. In addition to various individual quality attributes, those arising from the interactions between the antibodies also potentially emerge through co-formulation. In this study, we describe the development of a widely applicable multi-dimensional liquid chromatography coupled to tandem mass spectrometry method for antibody homo- versus hetero-aggregate characterization. The co-formulation of trastuzumab and pertuzumab was used, a challenging model system, comprising two monoclonal antibodies with very similar physicochemical properties. The data presented demonstrate the high stability of the co-formulation, where only minor aggregate formation is observed upon product storage and accelerated temperature or light-stress conditions. The results also show that the homo- and hetero-aggregates, formed in low and comparable proportions, are only marginally impacted by the formulation and product storage conditions. No preferential formation of hetero-aggregates, in comparison to the already existing pertuzumab and trastuzumab homo-aggregates, was observed.


Subject(s)
Antibodies, Monoclonal , Tandem Mass Spectrometry , Chromatography, Liquid , Antibodies, Monoclonal/chemistry , Trastuzumab/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...